
Schulinternes Curriculum für die Sekundarstufe 2 Geschwister-Scholl-Gymnasium Velbert

Stand: 20.06.22

1. Grundlage des Unterrichts in der Sekundarstufe 2

In der gymnasialen Oberstufe wird die Arbeit der Sek. 1 in den verschiedenen dargestellten Kompetenzbereichen (siehe Sek. 1) fortgeführt. Der Physikunterricht am GSG soll zusätzlich zu dem übergeordneten Ziel einer allgemeinen und fundierten physikalischen Bildung und dem Erwerb der Studierfähigkeit eine positive Grundeinstellung zur Physik vermitteln. Schüler dazu befähigen, naturwissenschaftliche und technische Systeme sachgerecht zu beurteilen und moderne Entwicklungen in unserem Lebensalltag zu verstehen und zu erkennen, halten wir für eine entscheidende Kompetenz.

Grundlage des Unterrichts in der Sek. 2 im Fach Physik sind die Richtlinien und Lehrpläne für die Sek. 2 des Landes NRW. Auch für die Sek. 2 wurde eine tabellarische Übersicht des schulinternen Curriculums über Vorhaben, Inhalte, Kompetenzen und weiteren Vereinbarungen zum Physikunterricht in der Oberstufe erstellt (s.u.). Die Themen der Qualifikationsphase richten sich nach den Vorgaben für das Zentralabitur in NRW. Sie werden im Grund- und Leistungskurs zu Beginn der Qualifikationsphase mitgeteilt.

2. Entscheidungen zum Unterricht

2.1 Übersichtsraster Unterrichtsvorhaben

Die in den jeweiligen Jahrgangsstufen unterrichteten Wochenstunden (a' 67,5 Minuten) sowie die Anzahl und Dauer der zu schreibenden Klausuren können der folgenden Tabelle entnommen werden:

Jahrgangsstufe	Wochenstunden	Anzahl Klausuren	Dauer der Klausuren (Min.)
5.1	-	-	-
5.2	-	-	-
6.1	1	-	-
6.2	1	-	-
7.1	1	-	-
7.2	1	-	-
8.1	1	-	-
8.2	1	-	-
9.1	1	-	-
9.2	1	-	-
10.1	1	-	-
10.2	1	-	-
11.1	2	1	90
11.2	2	1	90
12.1	2	2	90 (GK), 120
			(LK)
12.2	2	2	90 (GK), 120
			(LK)
13.1	2	2	90 (GK), 120
			(LK)
13.2	2	1+1	90 (GK), 120
			(LK)

3.2 Konkretisierung der Unterrichtsvorhaben

JAHRGANGSSTUFE EF

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen		
11.1 Kinematik und Dynamik des Massepunktes. Welche Kröfte wirken auf den Fahrgeschäften einer Kirmes? ca. 10 Ustd.	 IF 1 Mechanik Kräfte und Bewegungen: Lineare Bewegungen Gleichmäßig beschleunigte Bewegungen Grundgleichung der Mechanik Kreisbewegungen Newton`sche Gesetze Reibungskräfte Impuls Stoßvorgänge Gravitationsgesetz Wellenausbreitung 	 UF2, UF4: Wiedergabe und Erläuterung von Größe, Position, Strecke, Geschwindigkeit, Beschleunigung, Energie, Masse, Arbeit und Impuls und ihre Beziehung untereinander an unterschiedlichen Beispielen E1: Analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ aus einer Wechselwirkungsperspektive E6: Berechnen mithilfe Newton'scher Gesetze die Wirkung mehrerer Kräfte auf Bewegungszustände 	zur Schwerpunktsetzung Physik der Fahrgeschäfte zur Vernetzung Anknüpfung an die Formeln zur Bewegungslehre aus der Sek 1 zu Synergien Verkehrserziehung in Hinblick auf die motorisierte Teilnahme im Straßenverkehr		
11.1 Energie und Arbeit ca. 10 Ustd.	 Lageenergie Bewegungsenergie Energiebilanzen Eigenschwingungen im Gravitationsfeld 	UF1: Beschreibung eindimensionaler Stoßvorgänge UF2: Unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen UF4: Beschreiben Schwingungen und identifizieren die dabei auftretenden Kräfte E6: Analysieren und berechnen auftretende Kräfte bei der Kreisbewegung	zur Schwerpunktsetzung zur Vernetzung Aspekte Energieerhaltung und Entwertung → (IF 7) Energiebegriff → Chemie (IF 1) zu Synergien Bestimmen mechanische Größen mit mathematischen Verfahren und digitaler Werkzeuge		

JAHRGANGSSTUFE EF

11.2 Gravitationsfeld und Astronomie Wie bewegen wir uns im Sonnensystem? ca. 8 Ustd.	Gravitation und Astronomische Beobachtungen • Gravitationsgesetz • Planetenbewegung • Kepler`sche Gesetze • Energie und Arbeit im Gravitationsfeld	UF2: Beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept. E3, E6: Verwenden Erhaltungsgesetze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewe-	 zur Schwerpunktsetzung Berechnungen zu Umlaufbahnen zu Synergien → Informatik Einsatz von Kalkulationsprogrammen
		gungsgrößen zu berechnen. K2: Entnehmen Kernaussagen zu naturwissenschaftlichen Positionen zu Beginn der Neuzeit aus einfachen historischen Texten E7, B3: Beschreiben an Beispielen Veränderungen im Weltbild, die durch Arbeiten von Kopernikus, Keppler und Newton initiert wurden. B2 B3: Erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme der Raumfahrt	
11.2 Akustik und Wellenlehre Ca. 13 Ustd	 IF 1: Schwingungen und Wellen Wellenausbreitung Eigenschwingung und Resonanz Träger für Welle 	UF1 UF4: Beschreiben Schwingungen und Wellen als Störung eines Gleichgewichtes und Identifizieren die dabei auftretenden Kräfte E1: Analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ.	zur Schwerpunktsetzung Flug in den Weltraum (Planungsspiel) zur Vernetzung Sender und Empfänger (Hören in der

JAHRGANGSSTUFE EF				
Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen	
			zu Synergien Erdkunde: Bestimmung der Himmels- richtungen	

Kompetenzerwartungen und inhaltliche Schwerpunkt bis zum Ende der Qualifikationsphase (GK)

JAHRGANGSSTUFE Q1/Q2				
Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen	
12.1 Quantentheorie Was bedeutet ,, subatomar"? ca. 12 Ustd.	IF 2 QuantenobjekteElektron und PhotonWelle-Teilchen-Dualismus	UF1 E5: Erläutern anhand einer vereinfachten Version des Millikanversuchs die grundlegenden Ideen und Ergebnisse zur Bestimmung der Elementarladung	zur Schwerpunktsetzung Erforschung des Elektrons Erforschung des Protons	
	 Basiskonzept Energie Energie bewegter Elektronen Quantelung der Energie von Licht und Austrittsarbeit 	UF1 UF2 E4: Erläutern die Aussage der de Broglie-Hypothese, wenden diese zur Erklä- rung des Beugungsbildes beim Eletronen- beugungsexperimentes an und bestimmen die Wellenlänge der Elektronen	"Millikanversuch" "Broglie-Hypothese" Elektronenbeugungsexperiment	
	Basiskonzept Struktur und Materie Elementarladung Elektronenmasse Photonen als Quantenobjekt Elektronen als Quantenobjekt	E6 E5 E3: Modellieren Vorgänge im Fadenstrahlrohr mathematisch, variieren Parameter und leiten dafür deduktiv Schlussfolgerungen her und ermitteln die Elektronenmasse K3: Veranschaulichen mithilfe der Wellenwanne qualitativ unter Verwendung von Fachbegriffen ebende Wellen sowie die Phänomene Beugung, Interferenz, Refle-		
	Basiskonzept Wechselwirkung Bewegung von Ladung in homogenen E- und B-Feldern Lorentzkraft	xion und Brechung.		

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
	 Lichtwellenlänge, Lichtfrequenz Huygens`sches Prinzip Kreiswellen, ebene Wellen Reflexion, Brechung, Beugung und Interferenz Streuung von Elektronen an Festkörpern Welle-Teilchen-Dualismus 		
12.1 Elektrische Energie ca. 10 Ustd.	IF 3 ElektrodynamikElektrische SpannungElektrische EnergieInduktion	IF4: Zeigen den Einfluss und Anwendung physikalischer Grundlagen im Umfeld der Schule bei der Bereitstellung und Weiterleitung elektrischer Energie auf. UF1 E6: Erläutern am Beispiel der Leiter-	zur Schwerpunktsetzung Städtische Stromversorgung von Velbert Besuch des benachbarten Umspannwer-
	 Spannungswandlung Basiskonzept Wechselwirkung Elektromagnetische Induktion Induktionsspannung Transformator Lenz`sche Regel 	schaukel das Auftreten einer Induktions- spannung durch die Wirkung der Lorenz- kraft bewegte Ladungsträger UF4 E5: Erläutern anhandes Thom- son`schen Ringversuchs die Lenz`sche Re- gel	kes zur Vernetzung Aspekte Energieerhaltung und Entwertung → (IF 7) zu Synergien Energiesparen in unserer Schule

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
	Basiskonzept Energie Erzeugung von sinusförmigen Wechselspannungen Energieerhaltung Ohm`sche Verluste	K2: Recherchieren historische Vorstellung und Experimente zu Induktonserscheinun- gen	
12.2 Erforschung des Mikro- und Makrokosmos ca. 14 Ustd.	 IF 4: Stahlung und Materie Spektrum der elektromagnetischen Strahlung Energiequantelung in der Atomhülle Ionisierende Strahlung Kernumwandlung Standardmodell der Elementarteilchen 	UF1 E5 K2: Erklären Sternspektren und Frauenhoferlinien UF1 E6: Erklären die Energie absorbierter und emittierter Photonen mi den unterschiedlichen Energieniveaus in der Atomhülle UF1 K!: Erläutern den Begriff Radioaktivität und beschreiben zugehörige Kernumwandlungsprozesse	zur Schwerpunktsetzung Erforschung des Mikro- und Makrokosmos zu Synergien → Chemie Flammenfärbung ausgesuchter Salze (Barium, Strontium,)
	Basiskonzept Wechsel- wirkung Quantenhafte Emission und Absorption von Photonen Detektoren Basiskonzept Energie Linienspektren Energieniveaus der Atomhülle Quantelung der Energie	E4 E5: Erläutern den Nachweis unterschied- licher Arten ionisierender Strahlung mit- hilfe von Absorptionsexperimenten K3 K1: Interpretieren Spektraltafeln des Sonnenspektrums im Hinblick auf die in der Sonnen- und Erdatmophäre vorhandenen Stoffe B1 B3: Bewerten an ausgewählten Beispie- len Rollen und Beiträge von Physikerinnen und Physiker zu Erkenntnissen in der Kern- und Elementarteilchenphysik	

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
	 Dosimetrie Basiskonzept Struktur und Materie Kern-Hülle-Modell Strahlungsarten Elementumwandlung Röntgenstrahlen Kernbausteine und Elementarteilchen 		
12.2 Durch Raum und Zeit Ca. 13 Ustd	 IF 5: Relativität von Raum und Zeit Konstanz der Lichtgeschwindigkeit Zeitdilatation Veränderlichkeit der Masse Energie-Masse-Äquivalenz Basiskonzept der Wechselwirkung Quantenhafte Emission und Absorption von Photonen Detektoren Biologische Wirkung ionisierender Strahlung 	UF!: Erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie E6 E7: Erklären anschaulich mit der Lichtuhr grundlegende Prinzipien der speziellen Relativitästheorie und ermitteln quantitativ die Formel für die Zeitdilatation K3: Beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen. B1 B3: Bewerten die Bedeutung der Beziehung E= mc² für die Kernspaltung und Kernfusion	zur Schwerpunktsetzung Grundlegende Prinzipien der speziellen Relativitätstheorie (Lichtuhr)

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
	 Photon als Austauschteilchen der elektromagnetischen Wechselwirkung 		
	Basiskonzept Energie Raum und Zeit Schnelle Ladungsträger in E- und B- Feldern Ruhemasse und dynamische Masse		

$\mathbf{L}\mathbf{E}$	IST	IIN	CSI	KH	RS
7 17			(TI)	NU	17.7

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
12.1. Satellitennavigation- Zeitmessung ist nicht absolut Welchen Einfluss hat Bewgung auf den Ablauf der Zeit?	 IF 2 Relativitätstheorie Konstanz der Lichtgeschwindigkeit Problem der Gleichzeitigkeit 	Uf4 E5 E6: begründen mit dem Ausgang des Michelson-Morley-Experiments die Konstanz der Lichtgeschwindigkeit UF2: erläutern das Problem der relati- ven	zur Schwerpunktsetzung Ausgangsproblem: Exaktheit der Positionsbestimmung mit Navigationssystemen Begründung der Hypothese von der Konstanz der

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
ca. 4 Ustd.		Gleichzeitigkeit mit in zwei verschiedenen Inertialsystemen jeweils synchronisierten Uhren UF2: begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Objekten Auswirkungen auf die additive Überlagerung von Geschwindigkeiten	Lichtgeschwindigkeit mit dem Ausgang des Michelson- und Morley-Experiments (Computersimulation). Das Additionstheorem für relativistische Geschwindigkeiten kann ergänzend ohne Herleitung angegeben werden
12.1 Höhenstrahlung Warum erreichen Myonen aus der oberen Atmosphäre die Erdoberfläche? ca. 4 Ustd.	 Zeitdilation und relativistischer Faktor Längenkontraktion 	E5: leiten mithilfe der Konstanz der Lichtgeschwindigkeit und des Modells Lichtuhr quantitativ die Formel für die Zeitdilatation her. E7: reflektieren die Nützlichkeit des Modells Lichtuhr hinsichtlich der Herleitung des relativistischen Faktors UF!: erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die	 zur Schwerpunktsetzung Mit der Lichtuhr wird der relativistische Faktor γ hergeleitet Der Myonenzerfall dient als experimentelle Bestätigung der Längenkontraktion (im Vergleich zur Zeitdilatation)

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
		Entwicklung der speziellen Relativitätstheorie E6: begründen den Ansatz zur Herleitung der Längenkontraktion UF1: erläutern die relativistischen Phänomene Zeitdilatation und Längenkontraktion anhand des Nachweises von in der oberen Erdatmosphäre entstehenden Myonen K3: beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen	
12.1 Teilchenbeschleuniger -Warum Teilchen aus dem Takt geraten Ist die Masse bewegter Teilchen konstant? ca. 8 Ustd.	 Schnelle Ladungsträger im E- und B-Feldern Ruhemasse und dynamische Masse Bindungsenergie im Atom- kern 	K2 K3: erläutern auf der Grundlage historischer Dokumente ein Experiment (Bertozzi- Versuch) zum Nachweis der relativistischen Massenzunahme UF2: erläutern die Energie-Masse-Beziehung,	zur Schwerpunktsetzung Der Einfluss der Massenzunahme wird in einer Simulation durch das "Aus-dem-Takt-Gera- ten" eines beschleunigten Teilchens im Zyklotron ohne Rech- nung veranschaulicht. Die Formel für die dynamische

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
		berechnen die relativistische kinetische Energie von Teilchen mithilfe der Energie- Masse- Beziehung UF4 B1: beschreiben die Bedeutung der Energie-Masse- Äquivalenz hinsichtlich der Annihilation von Teilchen und Antiteilchen, bestimmen und bewerten den bei der Annihilation von Teilchen und Antiteilchen frei werdenden Energiebetrag, beurteilen die Bedeutung der Beziehung E=mc2 für Erforschung und technische Nutzung von Kernspaltung und Kernfusion.	Masse wird als deduktiv herleitbar angegeben. Interpretation des Zusammenhangs zwischen Bindungsenergie pro Nukleon und der Kernspaltungs- bzw. Kernfusionsenergie bei den entsprechenden Prozessen. Es können Filme zu Hiroshima und Nagasaki eingesetzt werden. Erzeugung und Vernichtung von Teilchen
12.1 Satellitennavigation -Zeitmessung unter dem Einfluss von Geschwindigkeit und Gravita- tion Beeinfllusst Gravition den Ablauf der Zeit? Ca. 3 Ustd	 Der Einfluss der Gravitation auf die Zeitmessung Gravitation und Zeitmessung Die Gleichheit von träger und schwerer Masse 	Uf4: beschreiben qualitativ den Einfluss der Gravitation auf die Zeitmessung K3: veranschaulichen mithilfe eines einfachen gegenständlichen Modells den durch die Einwirkung	zur Schwerpunktsetzung Der Gang zweier Atomuhren in unterschiedlicher Höhe in einem Raum (früheres Experimente der PTB Braunschweig)

LEISTUNGSKURS			
Unterrichtsvorhaben	Weitere Vereinbarungen		
		von massebehafteten Körpern hervor- gerufenen Einfluss der Gravitation auf die Zeit- messung sowie die "Krümmung des Raums"	Flug von Atomuhren um die Erde (Video)

LEISTUNGSKURS			
Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
12.1. Untersuchung von Elektronen Wie können pyhsikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemeessen werden? ca. 4 Ustd.	 Eigenschaften elektrischer Ladungen und ihre Felder Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern Ladungstrennung und Ladungsträger Bestimmung der Elementarladung Grundlagen (Elektrische Felder, Feldlinien, potentielle Energie, Kondensator) 	UF2 E6: erklären elektrostatische Phänomene und Influenz mithilfe grundlegender Eigenschaften elektrischer Ladungen K3 E6 B4: erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder B4 UF2 E1: leiten physikalische Gesetze (u.a. die im homogenen elektrischen Feld gültige	einfache Versuche und visuelle Medien zur Veranschaulichung elektrischer Felder im Feldlinienmodell, Plattenkondensator (homogenes E-Feld), evtl. Apparatur zur Messung der Feldstärke gemäß der Definition, Spannungsmessung am Plattenkondensator, Bestimmung der Elementarladung mit dem Millikanversuch

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
		Beziehung zwischen Spannung und Feldstärke und den Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her	
12.1 Bestimmung der Masse eines Elektrons (Leitfrage bleibt bestehen) ca. 8 Ustd.	 Magentische Felder Feldlinien Potentielle Energie im elektrischen Feld Energie bewegter La- dungsträger Elektronenmasse 	B1 B4: erläutern an Beispielen den Stellenwert experimenteller Verfahren bei der Definition physikalischer Größen (elektrische und magnetische Feldstärke) und geben Kriterien zu deren Beurteilung an (z.B. Genauigkeit, Reproduzierbarkeit, Unabhängigkeit von Ort und Zeit) UF1 K3: treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1), beschreiben qualitativ die Erzeugung	Fadenstrahlrohr (zunächst) zur Erarbeitung der Versuchsidee, (z.B.) Stromwaage zur Demonstration der Kraftwirkung auf stromdurchflossene Leiter im Magnetfeld sowie zur Veranschaulichung der Definition der magnetischen Feldstärke zur Vernetzung Als Versuchsidee wird (evtl. in Anlehnung an astronomischen Berechnungen in der EF) die Auswertung der Daten einer erzwungenen

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
		eines Elektronenstrahls in einer Elektronenstrahlröhre UF2 UF4 B1: ermitteln die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch)	Kreisbewegung des Teilchens erar- beitet
12.1 Aufbau und Funktionsweise wichtiger Versuchs- und Messapparaturen Wie und warum werden physikalische Größen meistens elektrisch erfasst und wie werden sie verarbeitet? ca. 12 Ustd.	Eigenschaften elektrischer Ladungen und ihrer Felder Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern Anwendung in Forschung und Technik	E1 E2 E3 E4 UF1: beschreiben qualitativ und quantitativ die Bewegung von Ladungsträgern in homogenen elektrischen und magnetischen Feldern sowie in ge- kreuzten Feldern (Wien-Filter, Hall-Effekt) K1 K3 UF3: erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten aus dem Bereich der Elektrik UF2 UF4 E5 E6: ermitteln die Ge- schwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch) schließen aus spezifischen Bahnkurvendaten beim Massenspektrometer auf wirkende	veranschaulichung mit dem Hallef- fektgerät (Silber), Kalibrierung einer Hallsonde, Messungen mit der Hallsonde, u. a. nachträgliche Vermessung des Helmholtzspulenfeldes, Bestimmung der magnetischen Feldkonstante, Arbeits- und Funktionsweisen sowie die Verwendungszwecke diverser Elektronenröhren, Teilchenbe- schleuniger und eines Massenspektrometers werden untersucht.

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
		Kräfte sowie Eigenschaften von Feldern und beweg- ten Ladungsträgern	
12.1 Erzeugung, Verteilung und Bereitstellung elektrischer Energie Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden? Ca. 17 Ustd	 Elektromagnetische Induktion Das grundlegende Prinzip der Induktions Induktionsvorgänge Lenz`sche Regel Energie des magnetischen Feldes 	B4 UF2 E1: entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist UF2 E6: wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen E-Feld) problembezogen aus und leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her	zur Schwerpunktsetzung Leiterschaukelversuch evtl. auch im Hinblick auf die Registrierung einer ge- dämpften mechanischen Schwingung aus- wertbar, Gleich- und Wechselspannungsge- neratoren werden nur qualitativ behandelt. Das Induktionsgesetz in seiner all- gemeinen Form wird erarbeitet: 1. Flächenänderung (deduktive Herleitung) 2. Änderung der Feldgröße B (quantitatives Experiment)

ELISTOTOGRAN			
Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
12.1. Physikalische Grundlagen der drahtlosen Nachrichtenübermittlung Wie können Nachrichten ohne Materietransport übermittelt werden? ca. 10 Ustd.	Elektromagnetischer Schwingkreis	E2 E4 B1: erläutern die Erzeugung elektromagnetischer Schwingungen, erstellen aussagekräftige Diagramme und werten diese aus UF1 UF2: erläutern qualitativ die bei einer ungedämpften elektromagnetischen Schwingung in der Spule und am Kondensator ablaufenden physikalischen Prozesse UF1 UF2 E6: beschreiben den Hertz'schen Dipol als einen (offenen) Schwingkreis, erläutern qualitativ die Entstehung eines elektrischen bzw. magnetischen Wirbelfelds bei Bbzw. E-Feldänderung und die Ausbreitung einer elektromagnetischen Welle	Erinnerung an die Anregung des MW-Radio- Schwingkreises durch "Radiowellen" zur Motivation der Erforschung sogenannter elektromagnetischer Wellen Das Phänomen der elektromagnetische Welle, ihre Erzeugung und Ausbreitung werden erarbeitet. Übergang vom Schwingkreis zum Hertz'schen Dipol durch Verkleinerung von L und Czur Vernetzung: Die Möglichkeiten zur mathematischen Beschreibung gedämpfter Schwingungen

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
12.2 Erforschung des Photons Besteht Licht doch aus Teilchen? ca. 8 Ustd.	IF 4 Quantenphysik Licht und Elektronen als Quantenobjekte Welle-Teilchen-Dualismus Quantenpyhsik und klassische Physik Lichtelektrischer Effekt Teilcheneigenschaft von Elektronen Planck`sches Wirkungsquantum	K4 E6: diskutieren und begründen das Versagen der klassischen Modelle bei der Deutung quantenphysikalischer Prozess UF2 E3 E: erläutern die qualitativen Vorhersagen der klassischen Elektrodynamik zur Energie von Photoelektronen (bezogen auf die Frequenz und Intensität des Lichts); erläutern den Widerspruch der experimentellen Befunde zum Photoeffekt zur klassischen Physik und nutzen zur Erklärung die Einstein'sche Lichtquantenhypothese	zur Schwerpunktsetzung: Versuch zur h-Bestimmung: Gegenspannungsmethode (Hg-Linien mit Cs-Diode) Versuch zur h-Bestimmung: Mit Simulationsprogramm (in häuslicher Arbeit)
12.2 Röntgenstrahlung Was ist Röntgenstrahlung? ca. 6 Ustd.	Licht und Elektronen als Quatenobjekte Röntgenröhre Röntgenspekrum Bragg-Reflexion Photoeffekt	UF1: beschreiben die Röntgenröhre E6: erläutern die Bragg-Reflexion an einem Einkristall und leiten die Bragg'sche Reflexionsbedingung her und Deuten die Entstehung der kurzwelligen Röntgenstrahlung. K2 K3: führen Recherchen zu komplexeren Fragestellungen der	zur Schwerpunktsetzung Sollte keine Röntgenröhre zur Verfügung stehen, kann mit einem interaktiven Bildschirmexperiment (IBE) gearbeitet werden (z.B. http://www.mackspace.de/unterri cht/simulationen_physik/quanten

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
		Quantenphysik durch und präsentieren die Ergebnisse	physik/sv/roentgen.php
12.2 Die Welt der kleinsten Dimensionen	Welle-Teilchen-Dualismus und Wahr- scheinlichkeitsinterpretation	UF1 UF4 E6: deuten das Quadrat der Wellenfunktion qualitativ als Maß für die Aufenthaltswahrscheinlichkeit	zur Schwerpunktsetzung Ausblick auf Schrödinger Glei- chung genügt
Was ist anders im Mikrokosmos?	Quantenpyhsik und klassische Physik	von Elektronen und ermitteln die Wellenlänge und die Energiewerte von im	and games
Ca. 8Ustd	 Linearer Potentialtopf Wellenfunktion und Aufenthaltswahrscheinlichkeit Heisenberg`sche Unschärferelation 	linearen Potentialtopf gebundenen Elektronen B2 E7: diskutieren das Auftreten eines Paradigmenwechsels in der Physik am Beispiel der quantenme- chanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschreibung mit klassischen Modellen B4 E7 K3: erläutern die Aussagen und die Konsequenzen der Heisenberg'schen Unschärferelation (Ort-Impuls, Energie- Zeit) an Beispielen und bewerten den Einfluss der Quantenphy- sik im Hinblick auf	

LEISTUNGSKURS			
Unterrichtsvorhaben	Weitere Vereinbarungen		
		Veränderungen des Weltbildes und auf Grundannahmen zur physikalischen Erkenntnis	

LEISTUNGSKURS				
Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen	
12.2 Geschichte der Atommodelle -Lichtquellen und ihr Licht Wie gwinnt man Inormationen zum Aufbau der Materie?	IF 5 Atom-, Kern- und Elementar- teilchenphysik Atombau Kern-Hülle-Modell	UF1: geben wesentliche Schritte in der historischen Entwicklung der Atommodelle bis hin zum Kern-Hülle- Modell wieder	zur Schwerpunktsetzung Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung), Linienspektren von H	
	 Energiequantelung Bohr`sche Postulate Rutherford`scher Strreuversuch Frank-Hertz-Veruch 	E5 E7: erklären Linienspektren in Emission und Absorption sowie den Franck-Hertz-Versuch mit der Energiequantelung in der Atomhülle und		
ca. 7 Ustd.		stellen die Bedeutung des Franck-Hertz- Versuchs und der Experimente zu Linienspektren in		

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen		
		Bezug auf die historische Bedeutung des Bohr'schen Atommodells dar			
12.2 Altersbestimmung Wie funktioniert die C14-Methode? 5 Ustd.	Radioaktiver Zerfall Zerfallsprozesse Kernkräfte Altersbestimmung	UF1 UF2: benennen Protonen und Neutronen als Kernbausteine, identifizieren Isotope und erläutern den Aufbau einer Nuklidkarte und identifizieren natürliche Zerfallsreihen sowie künstlich herbeigeführte Kernumwandlungsprozesse mithilfe der Nuklidkarte K3 E6: nutzen Hilfsmittel, um bei radioaktiven Zerfällen den funktionalen Zusammenhang zwischen Zeit und Abnahme der Stoffmenge sowie der Aktivität radioaktiver Substanzen zu ermitteln UF2: bestimmen mithilfe des Zerfallsgesetzes das Alter von Materialien mit der C14-Methode	zur Schwerpunktsetzung: Linearisierung, Quotientenmethode, Halbwertszeitabschätzung, ggf. logarithmische Auftragungzur Vernetzung: Umgang mit einer Nuklidkarte ist Aufbauend auf Physik- und Chemieunterreicht der S I		

Unterrichtsvorhaben	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen									
12.2 Energiegewinnung durch nukleare Prozesse Wie funktioniert ein Kraftwerkd? ca. 4 Ustd.	Kernspaltung und Kernfusion Ionisierende Strahlung	B1: bewerten den Massendefekt hinsichtlich seiner Bedeutung für die Gewinnung von Energie und bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kern- und Elementarteilchenphysik UF4 B4 E6: erläutern die Entstehung einer Kettenreaktion als relevantes Merkmal für einen selbstablaufenden Prozess im Nuklearbereich; beurteilen Nutzen und Risiken von Kernspaltung und Kernfusion anhand verschiedener Kriterien. K2: recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteil- chenphysik	Da in der Schule kaum Experimente zum Thema "Elementarteilchenphysik" vorhanden sind, sollen besonders Rechercheaufgaben und Präsentationen im Unterricht genutzt werden. Internet: http://project-physicsteaching.web.cern.ch/project-physicsteaching/german/									

3.3 Grundsätze der Leistungsbewertung in der Sek. 2

Erfolgreiches Lernen ist kumulativ. Entsprechend sind die Kompetenzerwartun-Kernlehrplan in der Regel in ansteigender Progression und Komplexität formuliert. Dies erfordert, dass Lernerfolgsüberprüdarauf ausgerichtet sein müssen, Schülerinnen fungen und Schülern Gelegenheit zu geben, Kompetenzen, die sie in den vorangegan-Jahren erworben haben. wiederholt und wechselnden Zusammenhängen unter Beweis zu stellen. Für Lehrerinnen und Ergebnisse Lehrer sind die der begleitenden Diagnose und Evaluation des Lernprozesses sowie des Kompetenzerwerbs Anlass, die Zielsetzungen und die Methoden ihres Unterrichts zu überprüfen und ggf. zu modifizieren. Für die Schülerinnen und Schüler sollen ein begleitendes Lernprozess Feedback Rückmeldungen zu den erreichten Lernständen eine Hilfe für die Selbsteinschäteine Ermutigung für zung sowie das weitere Lernen darstellen. Die Beurteilung von Leistungen soll demnach grundsätzlich mit der Diagnose des erreichten Lernstandes und Hinweisen individuellen Lernfortschritt verknüpft zum sein. Die Leistungsbewertung ist so anzulegen, dass sie den in den Fachkonferenzen Schulgesetz beschlossenen entspricht, dass die Kriterien für die Notengebung den Schülerinnen und Schüdie Korrekturen lern transparent sind sowie die und Kommentierungen den Lernenden auch Erkenntnisse über die individuelle Lernermöglichen. Dazu gehören Etablierung eines angemessenen Umgangs mit eigenen Stärken, Entwicklungsnotwendigkeiten und Fehlern insbesondere Hinweise zu individuell erfolgversprechenden allgemeinen und fachmethodischen Lernstrategien. Auf der Basis der §§ 48 und 70 des SchG sowie der §§ 13 bis 16 der APO-GOSt Berücksichtigung des Kernlehrplans das Fach Physik für Gymnasiale Oberstufe trifft die Fachkonferenz folgende Vereinbarungen:

Überprüfungsformen

Die Kompetenzerwartungen des Kernlehrplans ermöglichen eine Vielzahl von Überprüfungsformen. lm Verlauf der gesamten gymnasialen Oberstufe soll – auch mit Blick auf die individuelle Förderung - ein möglichst breites Spektrum der genannten Formen schriftlichen, mündlichen oder praktischen Kontexten zum Einsatz gebracht wer-Darüber können den. hinaus weitere Überprüfungsformen nach Entscheidung der Lehrkraft eingesetzt werden. Wich-Überprüfungsformen die Nutzung der Rahmen der Leistungsbewertung ist es, dass sich die Schülerinnen und Schüler zuvor im Rahmen von Anwendungssituationen hinreichend mit diesen vertraut machen konnten. Die folgende Auflistung der Überprüfungsformen ist nicht abschließend: Darstellungsaufgaben, Experimentelle Aufgaben, Herleitung mithilfe von Theorien, Rechercheaufgaben, Dokumentationsaufgaben, Präsentationsaufgaben, Bewertungsaufgaben.

Beurteilungsbereich "Sonstige Leistungen im Unterricht/Sonstige Mitarbeit"

Im Beurteilungsbereich "Sonstige Leistungen im Unterricht/Sonstige Mitarbeit" können neben den nachfolgend aufgeführten Überprüfungsformen – vielfältige weitere zum Einsatz kommen, für die kein abschließender Katalog festgesetzt wird. lm Rahmen der Leistungsbewertung gelten auch für diese die oben ausgeführten allgemeinen Lernerfolgsüberprüfung Ansprüche der Leistungsbewertung. Im Verlauf der gymnasialen Oberstufe ist auch in diesem Beurteilungsbereich sicherzustellen, dass Formen. die im Rahmen der Abiturprüfungen – insbesondere in den mündlichen Prüfungen – Bedeutung sind. frühzeitig vorbereitet angewendet werden. Zu den Bestandteilen der "Sonstigen Leistungen im Unterricht/Sonstigen Mitarbeit" zählen u.a. unterschiedliche Formen selbstständigen und kooperativen Aufgabenerfüllung, Beiträge zum Unterricht, Lehrkraft abgerufene Leistungsnachweise von z.B. die schriftliche Übung, von der Schülerin oder dem Schüler vorbereitete, in abgeschlossener Form eingebrachte Elemente Unterrichtsarbeit, die z.B. in Form von Präsentationen, Protokollen, Referaten Portfolios werden. Schülerinnen und möglich und Schüler bekommen durch die Verwendung einer Vielzahl von unterschiedlichen Überprüfungsformen vielfältige Möglichkeiten. Kompetenzentwicklung darzustellen und zu dokumentieren. Der Bewertungsbereich "Sonstige Leistungen im Unterricht/Sonstige Mitarbeit" Unterrichtsgeschehen die durch erfasst im schriftliche und ggf. praktische Beiträge sichtbare Kompetenzentwicklung der Schülerinnen und Schüler. Der Stand Kompetenzentwicklung in der "Sonstigen Mitarbeit" wird sowohl durch Beobachwährend des Schuljahres (Prozess tung Kompetenzentwicklung) als auch durch punktuelle Überprüfungen (Stand der Kompetenzentwicklung) festgestellt. Das nachfolgende Tableau zeigt die zugrunde liegenden Bewertungskriterien. Schülerinnen Das Tableau den und Schülern soll zu Beginn eines jeden Halbjahrs transparent gemacht werden.

Bewertungskriterien der "Sonstigen Mitarbeit" für die Sekundarstufe II

SoMi Sek. II (Mündliche Mitarbeit, Motivation & Engagement zu ergänzen durch Projekt-und Gruppenarbeit, Referate, Präsentationen, Außerschulisches, Lernkontrollen etc.)											
	Ungenügend	Mangelhaft	Ausreichend	Befriedigend	Gut	Sehr gut					
Regelmäßige Mitarbeit vor punktueller	Keine freiwillige Mitarbeit, häufiges unentschuldigtes Fehlen	Seltene Mitarbeit, meist nur nach Auf- forderung	Gelegentliche frei- willige Mitarbeit	Regelmäßige freiwillige Mitarbeit	Regelmäßige freiwillige Mitarbeit, die über den Unterricht hinausgeht	Regelmäßig freiwillige Mitarbeit, häufig Bei- träge, die über den Unterricht hinausgehen					
Hausaufgaben	Sehr häufig nicht gemacht	Häufig nicht oder/ und in nicht angemes- sener Form gemacht	Regelmäßig ge- macht	Regelmäßig und selbst- ständig gemacht	Regelmäßig und selbst- ständig, in Ansätzen mit eigenen Ideen	Eigenständig und selbstständig gemacht					
Beherrschung von Fachspra- che	Ungenügende sprachliche Aus- drucksfähigkeit, keine Fachsprache	Mangelhafte spr. Ausdrucksfähigkeit, nicht ausreichende Auwendung der Fach- sprache	Ausreichende spr. Ausdruckfähigkeit, gelegentlich korrek- te Fachsprache	Zusammenhängende sprachlich angemessene Darstellung, weitgehend korrekte Anwendung der Fachsprache, eigene Gesprächsbeiträge, in- formativ und verständ- lich	Zusammenhängende, sprachlich korrekte Dar- stellung, korrekte Anwen- dung der Fachsprache	Zusammenhängende, umfassende und präzise Darstellung, korrekte und souveräne Anwen- dung der Fachsprache					
Sachliches Ar- gumentieren	Keine unterrichtlich verwendbaren Bei- träge	Beträge unterrichtlich kaum verwendbar	Äußerungen be- schränken sich auf die Wiedergabe	Richtige Wiedergabe von Fakten und Zusammen- hängen aus dem Stoffge- biet	Überwiegend eigenständi- ge fortgeführte Beiträge	Sachgerechte und aus- gewogene Beurteilung					
Erfassen & Darstellen von Problemen	Falsche Äußerungen nach Aufforderung	Beiträge unterricht- lich kaum verwendbar	Nur fachl. Grund- kenntnisse, keine Lernfortschritte	Erworbene Fachkennt- nisse mit Hilfe angewen- det	Verständnis schwieriger Sachverhalte und Einord- nung in den Gesamtzu- sammenhang, Problemlö- sende Beiträge	Erkennen des Problems und Einordnen in grö- ßeren Zusammenhang					
Finden & Be- gründen von Lösungswegen	Keine unterrichtlich verwendbaren Bei- träge	Beträge unterrichtlich kaum verwendbar	Beiträge sind im wesentlichen richtig	Erworbene Fachkennt- nisse mit Hilfe ange- wandt	Erkennen des Problems, Unterschiede: wesentliche und unwesentliche Inhalte	Eigenständige, den Unterricht ragende neue Gedanken					
Reproduktion von Wissen & Methoden	Keine Fachkenntnis- se und kein Lernfort- schritt	Beiträge zeigen ganz geringe Fachkenntnis- se und kaum Lern- fortschritt	Geringe Fachkennt- nisse und kleine Lernfortschritte	Verknupfung mit Kennt- nissen der gesamten Unterrichtsreihe	Fundierte Anwendung von Kenntnissen	Differenzierte und fun- dierte Kenntnisse					
Interaktion	Teilnahmslosigkeit	Mangelnde Bereit- schaft, personen- oder sachbezogen zu rea- gieren	Bereitschaft, Beiträ- ge anderer inhaltlich wiederzugeben	Bereitschaft Beträge anderer aufzunehmen und konstruktiv zu nut- zen	Kritische Bewertung, Arbeit in Kleingruppen steuern	Kritische Bewertung, Zielgerichtete Ge- sprächsführung, Unter- richtsgespräch mitge- stalten					

Beurteilungsbereich "Schriftliche Arbeiten/Klausuren"

Klausuren

In der Sekundarstufe II gehen neben der sonstigen Mitarbeit die Ergebnisse der Klausuren gleich gewichtet in die Zeugnisnote ein. Die Anzahl und Länge der Klausuren sind unter Punkt 2 (s.o.) angeführt.

Die Beurteilung der Leistung in schriftlichen Arbeiten erfolgt in der Sekundarstufe II analog der Beurteilung im Zentralabitur (Die Prozentangaben beziehen sich auf die zu erbringende Gesamtleistung.)

Note	1+	1	1-	2+	2	2-	3+	3	3-	4+	4	4-	5+	5	5-	6
Punkte (in %)	≥95	≥90	≥85	≥80	≥75	≥70	≥65	≥60	≥55	≥50	≥45	≥40	≥33	≥26	≥20	≥0

Facharbeit

Im 2. Halbjahr der Qualifikationsphase I kann die 1. Klausur durch eine Facharersetzt Die folgenden Beurteilungskriterien mit entsprechender Gewichtung sollen dabei zugrunde aeleat werden. Wünschenswert ist es in der Regel Themen zu vergeben, die dem Verfasser Gelegenheit zu Experimendie Beurteilung diese geben, muss angemessen berücksichtigen.

Beurteilungskriterien der Facharbeit

Arbeitsprozess 10 %

Gelingt das Bemühen um eine eigenständige Schwerpunktsetzung und Selbstständigkeit im Auswählen, Anordnen, Verarbeiten und Darstellen der Sachverhalte?

In welchem Maße gelang Selbstständigkeit, Zeitplanung und Organisation? Wurden auftretende Probleme selbstständig gelöst oder gezielt Hilfestellung/Beratung eingefordert und genutzt?

Formales 20 %

Ist die Arbeit vollständig?(mit Deckblatt, Inhaltsverzeichnis und Literaturverzeichnis, Daten-CD)

Sind die Zitate exakt wiedergegeben, mit genauer Quellenangabe? Ist ein sinnvolles und korrektes Literaturverzeichnis vorhanden mit einer angemessenen Anzahl verschiedener Literaturstellen?

Wie werden Bildmaterialien, Tabellen, Grafiken als

Darstellungsmöglichkeiten genutzt?

Wie ist der äußere Eindruck (einheitliches Seitenlayout, leserfreundliches Schriftbild, angemessene Zeichenformatierung); sind die typographischen Vereinbarungen eingehalten?

Inhaltlicher und fachlich/methodischer Aspekt 35 %

Ist die Arbeit themengerecht, sachlogisch und differenziert gegliedert? Wird der Schwerpunkt/die Fragestellung der Arbeit präzise erfasst und erläutert?

Ist die Gesamtdarstellung in sich stringent?

Ist ein durchgängiger Zusammenhang/ Themenbezug mit

Interdependenzen gegeben oder werden Teilaspekte eher undurchdacht und lose aneinandergereiht?

Wird die Beherrschung fachspezifischer Methoden und deren Anwendung gezeigt?

Sind die notwendigen fachlichen Begriffe bekannt? Werden neue Begriffe klar definiert und eindeutig verwendet?

Werden die fachlichen Grundlagen und Zusammenhänge verstanden?

Sprachlicher und fachsprachlicher Aspekt 35 %

Werden die fachlichen Grundlagen und Zusammenhänge verständlich und differenziert dargestellt?

Wird, wo notwendig und sinnvoll, die (mathematische) Fach- und Symbolsprache sachgerecht verwendet?

In welchem Maße hat sich der Verfasser um die Beschaffung von Informationen und Literatur und deren sinnvoller Einbindung bemüht? Wie steht es mit der sprachlichen Richtigkeit (Rechtschreibung, Zeichensetzung, Grammatik) und dem sprachlichen Ausdruck (Satzbau, Wortwahl)?

Ist der Sprachstil dem Thema angemessen?